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1. Introduction

Placing a stack of N coincident D3 branes at the singular point of a Calabi-Yau cone, it

is possible to geometrically engineer a large class of superconformal gauge theories living

in four dimensions. Since the massless excitations in the decoupling limit have their origin
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in open strings stretched between the D3 branes, all the fields of the gauge theories are in

representations of the gauge group with exactly two indices; this implies that the matter

content of these gauge theories can be encoded in quiver diagram.

A supersymmetric quiver is a quantum field theory with product gauge group ΠiU(Ni)

and matter composed by chiral superfields transforming in the bifundamental or adjoint

representations. The name comes from the fact that it is possible to represent the field

content of the theory with a quiver diagram: each gauge factor U(Ni) corresponds to

a node in the diagram, the bifundamental fields correspond to arrows connecting two

different nodes and the adjoint fields are arrows starting and ending in the same node. The

bifundamental fields transform in the (N i, Nj) representations of the groups U(Ni) and

U(Nj), located at the tip and at the tail of the arrow. In this sense N = 4 SYM is one of

the simplest supersymmetric quivers, with just one node and three arrows.

Since all the fields are in 2-index representations of the (in general non simple) gauge

group, quiver gauge theories admit a natural one-parameter large N expansion. N is simply

the greatest common divisor of the ranks {Ni}: Ni = N xi.

For all the models arising from D3 branes at singularities it is possible to take the near

horizon limit [1, 2]: there is a gravity dual provided by Type IIB superstring compactified

on AdS5×X5, where X5 is the Sasaki-Einstein compact base of the Calabi-Yau cone. Much

of the predictive power of the duality resides in the fact that there is a limit in which a

description by weakly coupled gravity on AdS5 is adequate. This limit corresponds to taking

the large N limit and to selecting a particular point in the manifold of four dimensional

conformal field theories. This point is located in a limit of infinite couplings, for instance

in the basic case of N = 4 SYM it corresponds to g2
Y MN = ∞.

In [3] Henningson and Skenderis showed, for this last type of models, the validity of

a peculiar relation between “c” and “a”, the two gravitational central charges of the 4D

conformal field theory: they are always equal in the large N limit. This is a consequence

of the fact that the dual gravity on AdS5 is weakly coupled. Since the values of the

central charges “c” and “a” are invariant under marginal deformations, the relation c = a

is true for the whole set of 4D CFTs containing the one with a weakly coupled gravity

dual.

We stress that the relation c = a is quite a remarkable property for 4D conformal field

theories; for example the OPE of the stress-energy tensor with itself in general contains

other operators (like the Konishi current), but for theories with c = a this OPE is closed,

meaning that the singular part of the OPE contains only the identity operator and the

stress-energy tensor [4 – 6].

We would like to remark that the previous discussion does not imply that a correspon-

dence AdS5/CFT4 requires c = a, it just means that if c 6= a (as is the case for theories

with flavors, i.e. fundamental matter) the dual AdS5 gravity cannot be weakly coupled.

Interestingly, [7] describes a candidate gravity dual for SQCD with flavors; this model has

c 6= a and indeed the gravity dual is not weakly coupled.

We will give a simple proof that the relation c = a holds for any superconformal

quiver, without assuming the existence of a brane description of the gauge theory. This

result suggests that all superconformal quivers can be engineered from D3 branes probing a
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Calabi-Yau singularity. Equivalently, there should be a one-to-one correspondence between

three-dimensional Calabi-Yau cones (possibly with fluxes turned on) and superconformal

quivers.

Motivated by this observation, we start a classification of superconformal quivers,

giving some more evidence to this expectation. We concentrate on the class of models

that we find more interesting: completely chiral quivers, i.e. models whose quiver dia-

gram has no bidirectional arrows. We complete the classification of the models that can

be Seiberg dualized to a 3 or 4 block quiver (the precise definitions are given at the be-

ginning of Section 3). For all these models the quiver intersection matrix has rank 2,

so they are naturally expected to have a string description in terms of complex cones

with precisely one vanishing four–cycle, i.e. cones over one complex surface. It is also

natural to expect the requirement of complete chirality to imply that these models be-

long to the regular class, i.e. the Calabi–Yau metric on the cone should be induced by

a smooth metric on the compact surface. It is well known that smooth Kähler–Einstein

metrics can (and actually do, thanks to the results of Tian and Yau) exist only on CP
2,

CP
1 × CP

1 and del Pezzo n surfaces (3 ≤ n ≤ 8).1 The superconformal quivers arising

from cones on these Kähler–Einstein surfaces are indeed well known to admit a three-block

structure. On the other hand, one could expect to find a more general class of models

within our gauge-theoretical classification, corresponding to compactifications with fluxes.

These more general models should thus admit a supergravity description on AdS5 × X5,

where X5 has a smooth metric which, in the presence of fluxes, is not necessarily Sasaki–

Einstein. Because of supersymmetry, the background should nevertheless admit a Killing

spinor.

The strategy of our classification is as follows: we first show that a superconformal

fixed point exists only if a highly restrictive condition for the discrete parameters of the

quiver is satisfied. This condition is a Diophantine equation for the number of arrows

between the nodes, and depends parametrically on the number of nodes in each block (it is

crucial that the ranks of the gauge groups do not enter in this equation). These Diophantine

equations already appeared in this context by different means. The superconformal models

are in correspondence with the solutions of these equations. Different solutions to the same

equation correspond to different Seiberg dual phases of the same gauge theory. We then

classify all the possible Diophantine equations.

During this process we discover an interesting operation, that enables one to construct

new quivers from known ones. This operation is called “shrinking”, since at the level of

quiver diagrams it consists in replacing a block composed by n2 nodes with a single node.

The applicability of the “shrinking” procedure is not restricted to chiral quivers, it can

be applied to any superconformal quiver containing a block with at least four nodes. A

general geometric interpretation of this procedure should be possible; we conjecture that

it is related to Discrete Torsion, i.e. turning on discrete fluxes for RR and NS 3-form field

strengths.

1Smooth del Pezzo n surfaces are the blow up of n points in general position on CP
2. Alternatively, del

Pezzo n can be seen as the blow up of n − 1 generic points on CP
1
× CP

1.
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The surprising result of the classification is that all 3 and 4 block superconformal

chiral quivers (beyond del Pezzo quivers) can be obtained by a del Pezzo n quiver (with

4 ≤ n ≤ 8) shrinking one or two blocks composed by four nodes. This in turn suggests

that all quivers whose quiver matrix has rank 2 can be constructed in this way, without

any assumptions about a block structure. If this is true the number of nodes of any rank-2

chiral quiver is at most 11, i.e. the number of nodes of the quiver for the last del Pezzo

surface, del Pezzo 8.

The paper is organized as follows.

In section 2 we give the general proof of the equality between the central charges,

then we discuss Seiberg dualities and the problem of finding the precise form of the su-

perpotential. A comment on the relation c = a along Renormalization Group flows is also

made.

The structure of 3-block quivers without adjoints and bidirectional arrows (chiral) is

discussed at length in section 3. Here we show, using a result proved in the appendix, that

the Diophantine equation classifying all possible models imposes that there are exactly 16

3-block quivers.

In section 4 two general operations on superconformal quivers are discussed, the orb-

ifold and the “shrinking” operations. In our case of interest (chiral quivers), the “shrinking”

procedure enables to construct a lot of new rank-2 chiral superconformal models, starting

from the well known del Pezzo quivers.

In the case of 4 blocks we show, in section 5, that the superconformal constraints

impose, as for 3 blocks, that only del Pezzo and shrunk del Pezzo quivers are possible. (In

this case we rely on a computer search, which is not a definitive proof but gives strong

evidence to the result).

2. General properties of superconformal quivers

In this section we show that all interacting superconformal quivers satisfy the relation

c = a, by proving a formula that relates the difference between c and a to a weighted

sum of the beta functions for the gauge couplings. We would like to remark that our

arguments use strong coupling properties of these 4D theories and crucially depend on

supersymmetry, while the results of [1 – 3, 6] are valid for non supersymmetric conformal

field theories as well. We then comment on the implications of this formula for Renor-

malization Group flows driven by superpotential couplings, comparing with supergravity

results on the axion-dilaton expectation values. We then discuss general features of quiver

gauge theories such as the existence of Duality Trees and the problem of finding the exactly

marginal superpotential.

A quivers has the superconformal symmetry if all the couplings sit at a Renormalization

Group fixed point, i.e. the beta function for each coupling is zero. Moreover we require

this fixed point to be completely interacting, in the sense that all the couplings are at a

non-trivial zero of the beta functions (indeed if a coupling is zero its corresponding beta

function vanishes trivially). This property can be seen as a direct consequence of the

definition of quivers: if one of the gauge couplings vanishes the corresponding gauge group
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decouples from the rest of the theory, and the bifundamental fields which are linked to this

node “lose” one index and become just fundamental. Thus if one of the gauge coupling is

free, the model will not be in the class of quiver theories we consider.

These interacting fixed points are never isolated. There is always a manifold of RG

fixed points. Sometimes this manifold contains the free theory. An example of this is

N = 4 SYM or, more generally, orbifolds of C
3. This is the sense in which the requirement

of interacting gauge couplings has to be interpreted in these cases: we have to rule out

the possibility of a fixed point manifold where one (or more) of the couplings is forced to

vanish.

2.1 Superconformal quiver implies c = a

In this paragraph we give a detailed analysis of the relation c = a for superconformal

quivers. The only ingredients we will use are the fact that the matter is in 2-index repre-

sentations and the fact that all gauge couplings are at an interacting RG fixed point.

The two gravitational central charges of a superconformal field theory, c and a, are

defined as the coefficients of the two possible terms of the trace anomaly. In a background

gravitational field gµν the trace of the energy momentum tensor is:

Θ[gµν ] =
c

16π2
(Wαβγδ)

2 − a

16π2
(R̃αβγδ)

2 + ∂αJα , (2.1)

where Wαβγδ is the Weyl tensor, R̃αβγδ is the dual of the Riemann tensor2 and the last

term represents scheme dependent total derivatives unimportant for us.

In [8, 9] exact formulae relating the gravitational central charges to the ’t Hooft anoma-

lies of the R-current have been found:






c =
3

32

(
3 trR3 − trR

)

a =
3

32

(
3 trR3 − 5 trR

)
.

(2.2)

Inverting this system we see that trR is proportional to c − a, so the condition c = a is

equivalent to trR = 0.3

We recall that the traces of the R-current, trR and trR3, are by definition fermionic

traces coming from the triangle anomalies of the R-symmetry current with the energy-

momentum tensor <RTT > or with itself <RRR>, respectively. For trRα (α is a positive

integer, we will need α = 1 or α = 3) there are thus contributions from the gauginos

(carrying r-charge 1) and from the fermionic components of the chiral superfields in the

representation RM (with r-charge rM and dimension dim[RM ]):

trRα =
∑

G∈gauge groups

dim[G] (1)α +
∑

M∈matter fields

dim[RM ](rM − 1)α . (2.3)

2An alternative definition is to take the coefficients of the 2 and 3 point function of the energy momentum

tensor in flat space. This can be seen by differentiating (2.1) with respect to the metric and then taking

the flat space limit.
3See [25], where it is pointed out that quiver gauge theories with purely chiral bifundamental matter

necessarily have trR = 0 as a consequence of vanishing ABJ anomaly at each node.
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The contribution from the gauge fields is always of order N2, since the dimension of the

adjoint of SU(N) is N2 − 1. If there are only fields in 2-index representation also the

contribution from the matter fields is O(N2). Thus, for quivers, c, a, trR, trR3 are all

of order N2. We are going to show that trR is O(1) for a supersymmetric quiver gauge

theory at an interacting conformal point.

We now need the formula for the beta function of the gauge couplings. In the case of

SU(N) the NSVZ beta function (exact to all orders in perturbation theory) is:

β 1

g2

=
1

8π2

3N − ∑

M µ[RM ](1 − γM (g))

1 − g2N/8π2
, (2.4)

where µ[R] is the Dynkin index of the representation R, defined by TrRT aT b = µ[R]δa b

(our conventions are such that for the fundamental representation µ = 1
2 , so for the adjoint

of SU(N) µ = N). In order to study the superconformal fixed point it is enough to take

in consideration the zeros of the numerator. So we define β (this coincides with (2.4) up

to a non-vanishing proportionality factor) to be

β = N +
∑

M

µ[RM ](rM − 1) , (2.5)

where we changed variables, from the anomalous dimensions γ to the r-charges, using the

relation between the total scaling dimension D of a chiral operator and its r-charge

D = 1 + γ/2 = 3/2 r .

Vanishing of β in equation (2.5) is equivalent to the condition for the cancellation of the

ABJ anomaly for the R charge. In the rest of the paper we will always take in consideration

just the numerator of the beta functions, and the variables will always be the r-charges

of the elementary chiral superfields. This is equivalent to demanding anomaly free R

symmetry. For quivers the matter resides in the adjoints and in the bifundamentals, so

(2.5) becomes:

βi = Ni +
∑

A∈adj[i]

Ni(rA,i − 1) +
1

2

∑

B∈bifund[i,j]

Nj(rB,ij − 1) . (2.6)

Here Ni is the rank of the ith group, SU(Ni). The first sum is on the adjoint multiplets of

the node i, carrying r-charge rA,i. The second sum is on all the nodes j different from i

and all bifundamentals connecting node i to node j, having r-charge rB,ij.

Let’s consider the sum of the previous beta functions, weighted with the ranks of the

gauge group Ni:

∑

i

Niβi =
∑

i

N2
i +

∑

i

∑

A∈adj[i]

N2
i (rA,i − 1) +

1

2

∑

i,j

∑

B∈bifund[i,j]

NiNj(rB,ij − 1) . (2.7)

The second sum is in fact a sum over all the adjoint chiral fields of the theory. The third

sum counts each bifundamental field exactly two times, so it can be replaced by a sum over

all bifundamental fields, without the factor 1
2 :

∑

i

Niβi =
∑

i

N2
i +

∑

A∈adjoints

dim[A] (rA − 1) +
∑

B∈bifund

dim[B] (rB − 1) . (2.8)
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In the large N limit the last expression matches the formula (2.3) for trR in the case of

adjoint and bifundamental matter, so we conclude:

trR =
∑

i

Niβi . (2.9)

Since at an interacting RG fixed point βi = 0 for each gauge group, trR will vanish as well.

The consequence is that for any superconformal quiver c = a in the large N limit.

We stress that this simple proof of the relation c = a is purely field-theoretical and

does not rely on any assumption about holography, in particular it does not require the

existence of a holographic dual for the superconformal quiver.

The argument above is true in the large N limit, where both c and a are of order

N2. There are corrections of order 1 coming from the fact that the dimension of the

representation for the adjoint chiral superfields is N2
i − 1 instead of N2

i . Another order 1

correction comes from considering U(N) gauge groups instead of SU(N), in this case the

source of the discrepancy would be the number of gauginos.

The same argument would also show that c = a for “non oriented” theories: additional

SO(N)/Sp(N) gauge groups and matter transforming in the symmetric and in the anti-

symmetric representation. For “non oriented” models there are corrections of order N , not

just of order 1.

We would like to point out that we didn’t make any assumption about the super-

potential of the theory. However this is an important issue: we will see that it is the

superpotential that ensures the possibility of flowing to the manifold of IR fixed points,

giving thus strong support to the idea of the existence of the non trivial superconformal

theories. Moreover, it is precisely a non zero superpotential that implies the existence of

marginal directions for the IR quivers.

2.2 A comment on RG flows and the string coupling

In this paragraph4 we would like to make some comments on formula (2.9):

trR =
∑

i

Ni βi .

This relation has been obtained without the requirement of being at criticality, so it can be

used to study non conformal supersymmetric quivers as well. Let’s consider what happens

along a Renormalization Group flow between two superconformal (interacting) quivers

driven by a superpotential coupling. Both the UV and IR fixed point are superconformal

theories with trR = 0.

It is possible to construct a lot of examples of this kind. For instance one can take

N = 4 SYM and add a mass term for one of the three adjoint superfields. The IR fixed

point is a N = 1 theory with two adjoints (of dimension 3/4) and a quartic superpotential.

Another well studied example starts from the N = 2 orbifold C × C
2/Z2, called the Â1

4This subsection is not directly related with the following part of the paper, that can be read indepen-

dently.
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model. If a suited mass term for the adjoints is added [10], this model flows in the IR to

the conifold: a quiver with two gauge groups of the same rank, four bifundamentals and

no adjoints. Also in this case the surviving bifundamental matter has dimension 3/4 (or

r-charge 1/2).

Since trR = 0 at the two ends of the RG flow it is natural to ask if trR = 0 along all

the flow. However outside criticality r-charges and formulae like (2.2) depend on the renor-

malization scheme used. So the question should be if there is a “natural” renormalization

scheme leading to trR = 0 along all the flow.

A hint toward the identification of this “natural scheme” comes from string theory.

There is in fact a relation between the string coupling gs and the gauge couplings of the

quiver gi:
N

4πgs
=

∑

i

Ni

g2
i

. (2.10)

Considering the variation of (2.10) with respect to a renormalization scale µ, we see that

trR can be interpreted as the beta function for the string coupling:

∂

∂ ln µ

N

4πgs
=

∑

i

Ni
∂

∂ ln µ

1

g2
i

=
∑

i

Niβi = trR . (2.11)

In this equation we are forgetting about the denominators of the NSVZ beta functions.

The idea is that in the “natural” renormalization scheme the denominators are absent. For

instance this is the case in the well studied Duality Cascade of Klebanov and Strassler [11],

were the quantities calculated in field theory and in string theory match precisely if the

denominators are not taken in consideration.

In this sense the interpretation of (2.11) is that
∑

i Niβi = trR is the natural definition

of trR away from criticality. The consequence is that, if gs remains constant, trR vanishes

along all the flow. This is clearly expected: we are considering flows driven by superpo-

tential terms, so, even if the r-charges are varying along the flow, the beta functions for

the gauge couplings should remain zero and, by (2.11), trR should remain zero as well.

The beta functions for the superpotential couplings that drive the flow are clearly different

from zero, but these do not enter in our formula (2.9) for trR.

If instead we consider holographic flows with varying gs, equation (2.11) implies that

the difference between the values of gs at the UV and at the IR is given by the integral of

trR: ∫ ∞

0
trR d ln µ =

N

4π
∆g−1

s . (2.12)

Let’s consider the situation in which the entire RG flow can be described by Type IIB

supergravity. This should correspond to having non trivial superconformal quivers both in

the UV and IR fixed point. In these case the dilaton can be set to a constant, leading to

trR = 0 along the entire flow.

On the gauge theory side the recent proposal of Kutasov [12] is related to this dis-

cussion. In [12 – 14] it is found, by a different path, that the “natural” scheme is the

one in which the couplings are identified with lagrange multipliers implementing the a-

maximization of [15] outside conformality. The anomalous dimensions (or the r-charges)

– 8 –
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are given by an explicit formula that interpolates between the UV and the IR points [12]

and in this scheme the denominators of the beta functions are absent. We can thus trust

the relations of [8, 9]






c =
3

32

(
3 trR3 − trR

)

a =
3

32

(
3 trR3 − 5 trR

)
(2.13)

along the whole flow, where for the r-charges the interpolating formulae of [12] have to be

used. However here a problem occurs: if we take for the definition a a the one used in [12]

(formula (2.13) plus Lagrange multipliers terms) and for c just formula (2.13), we see that

the relation c = a is spoiled outside conformality, since the Lagrange multipliers terms are

proportional to the superpotential beta-function, which is non-zero outside between the

UV and IR fixed points. However in [12] it is noticed that using just (2.13) the central

charge a still satisfies the a-theorem.

There are thus two possibilities: either one takes only formula (2.13) for the central

charges outside criticality, either one adds the lagrange multipliers terms both to c and a.

In this way trR vanishes all along the flow, as expected from string theory arguments. This

result should be true for general supersymmetric theories, and for flows given by gauge or

by superpotential couplings, not just for quiver gauge theories considered here.

2.3 Superpotentials, chiral quivers and Seiberg duality

The arguments given in section (2.1) lead naturally to the question:

Can any superconformal quiver be described by D3 branes at a Calabi-Yau singularity?

The support for a positive answer is provided by:

• The fields are in 2-index representations (leading to a natural large N limit), as is

always the case for D3 brane setups.

• Equality of the central charges c and a. This is always true [3] for Type IIB super-

strings compactified on AdS5 × X5, which are dual to the D3 brane theory.

In the case of N = 2 supersymmetry it is already known [16, 17] that there is a one-

to-one correspondence between superconformal quivers and geometries preserving N =

2 supersymmetry. The latter are classified by orbifolds of C
2; the well known Mc-Kay

correspondence then implies that the quiver diagrams are exactly the Dynkin diagrams of

Â, D̂, Ê algebras. On the gauge theory side it is possible to prove that these are the only

possibilities [16]. Two key ingredients in this classification are that there are no anomalous

dimensions for the elementary fields and that the form of the superpotential (we continue

to use an N = 1 language) is imposed by N = 2 supersymmetry.

For N = 1 supersymmetry the problem is more complicated. On the geometry side a

complete classification of 3 complex dimensional Calabi-Yau singularities is still not known.

On the gauge theory side there are at least three complications:

• there can be anomalous dimensions: the whole class of superconformal quivers is

larger than the class given by the orbifolds of C
3, already classified in [18], where

anomaluos dimensions are absent.

– 9 –
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• the form of the superpotential does not descend directly from the quiver diagram.

In the case of “toric” quivers (the ranks of the gauge groups are all equal) there is a

technique, called Inverse Algorithm [19], that enables to find the superpotential. One

can use symmetries to restrict the possible superpotentials, as was done for ordinary

symmetries in [23] and for hidden “infinite coupling” symmetries in [27], however the

general case is still elusive.

• there are models with matter in chiral representations of the gauge group.

2.3.1 From superpotentials to geometry

Before discussing the property of chirality, we would like to make some more comments

on the superpotential of a generic N = 1 quiver. In section (2.1) we only considered the

data that can be encoded in the quiver structure: the field content of the theory. The field

content and the vanishing of the numerators of the beta functions for the gauge couplings

were the only ingredients needed to show that c = a. However it is important to stress that

this constitutes only a part of the definition of a 4D superconformal field theory: it should

also be specified what is the exact form of the superpotential W. Given the precise form

of the superpotential (a polynomial of r-charge 2 in the chiral superfields) it is possible to

calculate the moduli space of vacua of the theory, using the F-term equations.

As is well known, parallel D3 branes do not feel forces between each other and can freely

move in the transverse space, so the moduli space of the 4D gauge theory coincides with

the transverse Calabi-Yau cone. More precisely the moduli space M is the symmetrized

product of the Calabi-Yau cone Y :

M = Y N/SN , (2.14)

where SN is the symmetric group of permutations. If non-trivial fluxes are turned on, the

moduli space can reduce to a subcone of Y : a flux for the RR 3-form field strength can lift

some directions for the motion of the D3 branes in the transverse space, since such a flux

can be interpreted as giving rise to fractional D3 branes.

These properties of M are non trivial requirements on W, and we are not aware of

any argument showing that for any quiver it is possible to find a superpotential satisfying

these requirements.

Given a superconformal quiver Q, finding a W leading to a moduli space M which is a

three (or less) complex dimensional Calabi-Yau cone should be equivalent to show that the

quiver gauge theory Q has a Type IIB string dual: Type IIB string theory compactified

on M should lead to a gauge theory with quiver Q, superpotential W and moduli space

M, i.e. the theory we started with. This “Reverse Geometric Engineering” procedure

has been discussed in detail by Berenstein [20]. In [20] also vacua in which (2.14) fails

are discussed, these “non-Abelian moduli spaces of vacua” are generically associated to

marginal superpotential corresponding to NS fluxes, i.e. Discrete Torsion.

In general finding the “right” superpotential, and consequently the moduli space, is

not an easy task. For example, in the case of quivers arising from (complex) cones over

the complex surfaces del Pezzo 7 and del Pezzo 8, the superpotential is not known, also
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if it is guaranteed that a superpotential which gives the correct 3 complex dimensional

moduli space exists. We remark that given a quiver diagram it is not true that the “right”

superpotential is unique. For instance, in the del Pezzo n surfaces (for n ≥ 5), [21] finds

explicitly a moduli space of superpotentials of complex dimension 2(n − 4), arising from

the possibility of varying the complex structures for the del Pezzo surface.

Almost all the considerations we are going to make in the next sections are just at the

level of the quiver structure: quiver diagram, ranks of the gauge groups and r-charges of

the matter fields. We will be able to find the operators entering the superpotential (they

correspond to simple loops in the quiver diagram), but we will ignore the issue of which

are the relative coefficients among the different monomial terms.

2.3.2 Chiral quivers

N = 2 quivers and their direct N = 1 descendants, called “generalized conifolds”, are

non chiral models. This means that for each node the matter fields and gauge interactions

are non chiral: for each bifundamental field transforming in the (Ni, Nj), there is a corre-

sponding bifundamental field transforming in the (Nj , Ni). This doublet forms the N = 2

hypermultiplet.

In this paper we want to study the models where the N = 1 features are most evident,

so we restrict the attention to completely chiral quivers. With this term we mean quivers

with only chiral matter: adjoints are absent and, given two nodes, arrows connecting them

go only in one direction.

The matter content of a chiral quiver can be represented by a square antisymmetric

matrix Q, called quiver matrix, of dimension equal to the total number of nodes. The

element Qi j is the number of arrows from node i to node j, taken with a minus sign if the

arrows go from node j to node i.

A well studied set of completely chiral quivers are the superconformal theories arising

on a stack of D3 branes placed on vanishing del Pezzo surfaces [17, 21 – 28, 34 – 37].

For all the del Pezzo quivers the quiver matrix has rank two. This can be seen [22, 29]

using mirror symmetry and (p, q) webs techniques. The quiver matrix is then written as

Qi j = piqj − qipj , (2.15)

where pi and qj are integer numbers describing properties of the mirror picture.

The above definition of completely chiral quivers is the field theoretical analogue of the

algebro-geometric notion of “exceptional collection of sheaves”, important in the study of

quivers related to cones over a del Pezzo surface (for recent work see [34 – 37]). Physically

the meaning is that, given two fractional branes at the singularity, there is at most one

type of strings stretching between them. This tells that we have also to require that all

arrows between two given nodes have the same r-charges. In general, verifying this property

requires the knowledge of the exactly marginal superpotential. This property is always true

in the case of three block models corresponding to del Pezzo surfaces: del Pezzo 0, F0 and

del Pezzo n with 3 ≤ n ≤ 8.
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2.3.3 Duality trees

Chiral quivers are also the natural arena for the study of Seiberg Duality [30 – 32]. In

general, if a gauge group U(N) is Seiberg Dualised, the resulting quiver is different from

the initial one.5 Applying again Seiberg Duality to another node, a new different quiver is

obtained, and so on. Also if the quiver matrix changes, the rank of the quiver matrix is

invariant under Seiberg Duality.

An equivalence class of Seiberg dual quivers is in general composed by infinite different

quivers, and can be organized in a “Duality Tree” [26, 28]. A Duality Tree is a graph where

nodes are represented by theories, and two nodes are connected by an edge if there is a

Seiberg Duality leading from one theory to the other. We remark that in general there can

be loops in this tree.6 These loops give the possibility of engineering Duality Cascades of

the Klebanov-Strassler type [11, 26, 33].

A simple general property of Duality Trees that will be important for our classification

results is the existence of the “roots of the tree”, or of the “minimal models”. We define

the roots to be those models of the Duality Tree that (locally) minimize the sum of the

ranks of the gauge groups. That is models for which Seiberg Duality on any node increases

the rank of that node.

From the definition, since the sum of the ranks of the gauge groups is a positive integer,

it is obvious that for every Duality Tree there is at list one root. However we would like

to describe these minimal models more explicitly. In order to have a better understanding

we define the “relative number of flavors” n
F of a node in a chiral quiver to be

n
F

i =
Nf

Nc
=

1

Nc

∑

j

1

2
|Qi, j |Nj , (2.16)

i.e. the ratio between the total amount of matter charged under the gauge group and the

rank of the group.

For example in supersymmetric orbifolds of C
3 (classified by discrete subgroups of

SU(3), [18]) all the nodes have n
F = 3. One of the simplest is the del Pezzo 0 quiver of

figure 1. In fact this is the well known orbifold C
3/Z3.

Seiberg dualizing the ith node of a quiver the rank of the corresponding gauge group

changes as

Nc → Nf − Nc ,

so (since Ni = xi N)

xi → xi (nF

i − 1) . (2.17)

From this formula it follows that xi decreases if n
F

i < 2, otherwise it increases. Thus, given

a quiver in the Duality Tree, if there is a node with n
F < 2, Seiberg dualizing this node

reduces the sum of the ranks of the gauge groups. In other words we are moving downward

5For the conifold Seiberg Duality doesn’t change the quiver diagram and the r-charges (the Duality Tree

has just one node). For recent work in the “generalized conifold” see [43].
6So the term ”Duality Tree” is a misnomer, maybe ”Duality Graph” would be more precise. It is amusing

to observe that in the case of dP0 this graph is called the ”Markov Tree”, and it is an open mathematical

conjecture that this graph is really a tree, i.e. it does not contain loops.
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Figure 1: One of the quivers associated to dP0 ≡ CP
2. This is the only root of its associated

Duality Tree, also called the Markov Tree.

in the Duality Tree. This process can be repeated until the reach of a quiver such that

n
F

i ≥ 2 for all i. At this point it is not possible to decrease the ranks of the groups anymore:

this theory is a root (or minimal model) of the Duality Tree.

The conclusion is that minimal models are exactly the models with n
F ≥ 2 for each

gauge group.

It is important to note that the roots are in general not unique. For instance there

could be nodes with n
F = 2, dualizing one of them doesn’t change the ranks of the groups

but can change the quiver diagram and the total number of bifundamental fields. We will

encounter other examples of this fact in the next section, when we will see that there are

different “3-block” minimal quivers in the same Duality Tree.

The existence of roots is useful in the classification of quivers: all the quivers are

obtained by applying successive Seiberg Dualities to quivers satisfying the minimality con-

dition, thus it is enough to classify quivers with n
F ≥ 2 for each gauge group.

We would like to remark that these simple arguments do not require the chirality of

the quiver, also if for simplicity we only discussed this case. Of course for non-chiral quivers

the definition of n
F is different, for instance also adjoint fields contribute.

3. Three-block chiral quivers

In this paper we want to start the classification of chiral quivers, taking in consideration

models with a quiver matrix of rank equal to two, the minimal possible rank. We have not

been able to classify all rank two chiral quivers. The main problem is that it is difficult to

perform a general analysis of quivers with five or more nodes: it is not clear which loops

enter in the superpotential, and it is not completely clear if an arbitrary number of Seiberg

Dualities leaves the quiver chiral. Recently there has been work devoted to understanding

the precise conditions ensuring that the Seiberg dual of a chiral quiver is chiral (this leads

to the notion of “strongly exceptional collection”, see [35 – 37]).

A way to circumvent these problems is to consider quivers that can be organized in

three or four blocks. The nodes of a quiver can be grouped in “blocks”, if

• each node in a given block has the same rank;

• there are no arrows between nodes of the same block;
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• the number and the direction of arrows between two nodes depend only on the blocks

where the nodes are.

Equivalently the quiver matrix and the vector of the ranks of the gauge groups satisfy a

block structure.

Instead of analyzing from the beginning the four-block quivers (which include as a

particular case the three-block), we first discuss the three-block quivers. The reason is

that in this simpler case it is possible to discuss some interesting features (unitarity and

asymptotic freedom) more easily. Moreover we arrive at the definition of the procedure

of shrinking, to be discussed in the next section. Surprisingly, it turns out that using

this procedure it is possible to obtain all the four-block superconformal quivers starting

from the known three block del Pezzo quivers. It also turns out that it is not possible

to obtain the models associated to the complex surfaces del Pezzo 1 and del Pezzo 2, for

which, as is well known on the geometry side, there is no smooth Kähler–Einstein metric

and the Sasaki–Einstein structure on X5 is irregular. As a consequence, via AdS/CFT,

the associated quivers should have irrational r-charges;7 the shrinking procedure does not

change the r-charges and for the models we discuss the r-charges are rational, so this is a

check of our results.

3.1 General structure of three-block quivers

In this section we analyze in detail the case of chiral quivers that can be organized in a

three-block structure, i.e. in their Duality Tree there is sub-tree composed by three-block

quivers. We study the constraints on the matter content of the quiver arising by anomaly

cancellation and by conformal invariance. This leads to a Diophantine equation for the

entries of the quiver matrix, that has already been derived in a similar way in [34, 27].

This equation depends on the dimensions of the three blocks and classifies all possible

models. In the simplest case of all three blocks of dimension one (i.e. a 3-nodes quiver) it

reduces to the well known Markov equation and the corresponding Duality Tree is called

the Markov Tree. We have been able to prove that, modulo Seiberg Duality, exactly 10

different theories admit a three-block structure. These are the 8 quivers arising from the

del Pezzo surfaces CP
2, F0, dPn (3 ≤ n ≤ 8) and just two other models. These two models

can be obtained by “shrinking” 4 nodes of the del Pezzo 5 and the del Pezzo 7 quivers.

The Diophantine equations related to del Pezzo surfaces have already been studied

in the mathematical literature [38] in works on three-block exceptional collections. Here

however we will not restrict ourselves a priori to del Pezzo surfaces. Our new result is that

there are only two other possible Diophantine equations. We will give the detailed proof

of the unicity of this 10 models in the appendix A.

For three blocks the structure of the quiver diagram is always a triangle, since for each

block there is exactly one incoming arrow and one outgoing arrow. There is thus just one

way of drawing the quiver, as in figure 2. In this Figure α, β, γ are the number of nodes in

each block, a, b and c are the number of bifundamentals connecting the nodes. The gauge

7On the field theory side, this fact has been pointed out explicitly only very recently [45, 46].
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α

a

cb

U(Nx)

U(Nz)

γ β

U(Ny)    

 

Figure 2: General 3-block chiral quiver diagram. α, β, γ are the number of nodes in each block.

a, b, c are the number of bifundamental connecting the nodes.

groups are U(N x), U(N y), U(N z). The nine integer numbers (α, β, γ; a, b, c; x, y, z),

together with the parameter N , define completely the field content of the theory.

The quiver matrix is a square antisymmetric block-matrix of dimension (α + β + γ),

with blocks of dimension α × α, α × β etc.

The first physical condition to be imposed on the theory is that for each gauge group

the ABJ gauge anomalies vanish:

∑

j

Qij(Nxj) = 0 for each i. (3.1)

The kernel of Q has dimension (dim[Q] − 2), but we have to search this kernel for vectors

satisfying the “three-block” condition:

(x, . . . , x
︸ ︷︷ ︸

α

, y, . . . , y
︸ ︷︷ ︸

β

, z, . . . , z
︸ ︷︷ ︸

γ

) .

It is convenient to consider a reduced antisymmetric quiver matrix:

q =






0 c −b

−c 0 a

b −a 0




 (3.2)

Cancelling the gauge anomalies means that the 3-vector (αx, βy, γz) has to be in the kernel

of q. In the 3-blocks chiral quivers there is always exactly one such vector, modulo rescaling,

since a 3 × 3 antisymmetric matrix has always rank 2 (excluding the trivial case q = 0).

The kernel of q is generated by a vector proportional to (a, b, c), so (x, y, z) have to

satisfy:

(αx, βy, γz) ∝ (a, b, c) . (3.3)

At this point, for any choice of α, β, γ and of the 3 × 3 antisymmetric matrix q there

are well defined gauge theories (if the vector (αx, βy, γy) lies in the kernel of q), however it

is not guaranteed that the space of couplings contains an interacting conformal fixed point.
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In order to achieve this last requirement, which is quite restrictive, the beta functions

of the gauge couplings and of the superpotential couplings have to vanish. Once the

field content of a supersymmetric theory is given, the exact beta functions are completely

controlled by the r-charges of the matter fields.

We call the r-charges of the three set of bifundamental chiral superfields ra, rb, rc. The

beta functions of the gauge couplings, since we require an interacting RG fixed point, will

vanish exactly when their numerators vanish (see formulae (2.4) and (2.5)):

Nx +
1

2
βNy c(rc − 1) +

1

2
γNz b(rb − 1) = 0

Ny +
1

2
γNz a(ra − 1) +

1

2
αNx c(rc − 1) = 0 (3.4)

Nz +
1

2
αNx b(rb − 1) +

1

2
βNy a(ra − 1) = 0 .

Using (3.3) these equations can be written in terms of the quiver numbers (a, b, c):

a

α
+

1

2
b c(rc − 1) +

1

2
c b(rb − 1) = 0

b

β
+

1

2
c a(ra − 1) +

1

2
a c(rc − 1) = 0 (3.5)

c

γ
+

1

2
a b(rb − 1) +

1

2
b a(ra − 1) = 0 .

There is also a relation coming from the vanishing of the beta functions of the superpotential

couplings. From the quiver diagram in (figure 2) it is clear that all gauge invariant operators

candidate to appear in the superpotential are cubic8 and can be schematically written as

W = XαβXβγXγα . (3.6)

We would like to stress that this does not give enough information to construct the complete

superpotential and then the moduli space of vacua. This is for two reasons: first there can

be arrows with multiplicity (some entries of the quiver matrix are greater than 1), second in

the blocks there can be more than one node. So there are many gauge invariant operators

corresponding to XαβXβγXγα, and it should be specified which are the relative coefficients

of these different operators in the superpotential.

A chiral operator is marginal at the interacting fixed point if its total r-charge is 2. So

the r-charges have to satisfy another relation:

ra + rb + rc = 2 . (3.7)

In total there are 4 linear equations in the 3 variables ra, rb, rc. In order that a solution

exists the integers (a, b, c) have to satisfy a constraint. This constraint can be readily

obtained by considering, like in section (2.1), the sum of the three beta functions (3.5)

8There could be a priori the possibility of taking a superpotential sextic (or of higher order) in the fields.

In these cases it can be shown, using exactly the same methods of appendix A, that the corresponding

Diophantine equations have no solutions.
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(weighted respectively by the numbers a, b, c):

a2

α
+

b2

β
+

c2

γ
+ abc(ra + rb + rc − 3) = 0 . (3.8)

The superpotential thus imposes (3.7) the following Diophantine equation:

a2

α
+

b2

β
+

c2

γ
= abc . (3.9)

This equation is a generalization of the well known Markov Equation (α = β = γ = 1);

it automatically encodes all possible Seiberg Dualities, which act keeping fixed (α, β, γ) and

changing one of (a, b, c), depending on which block is dualized. The reason is as follows:

(3.9) is quadratic in each of the three variables (a, b, c), solving it in terms of one of the

three variables (for instance a) gives of course 2 solutions:

a =

αbc ±
√

(αbc)2 − 4α
(

b2

β
+ c2

γ

)

2
. (3.10)

Now suppose we know a particular integer solution (a0, b0, c0) of (3.9), corresponding to

the superconformal quiver Q. The triple (a0, b0, c0) clearly satisfies (3.10) as well, for a

specific choice of the sign in the r.h.s.. Since a0 is integer, the expression inside the square

root is a perfect square, so choosing the other sign gives another triple (ã0, b0, c0). This will

be another integer solution of (3.9), corresponding to the superconformal quiver obtained

by Q after Seiberg Duality of the block with α nodes. To be precise we should also note

that, since a0 is integer, if αbc is even (odd) also
√

. . . is even (odd), so the numerator in

(3.10) is even for both choices of the sign.

It is worth noting that (3.9) doesn’t only tell that there is a Duality Tree, but also en-

sures that all the models in the Duality Tree are completely chiral. Indeed the Diophantine

equation could also be derived by requiring chirality for the Seiberg dualized quiver [35]

or by studying “Partial Seiberg Dualities” (Picard-Lefschetz transformations) [29]. We de-

cided to use just the superconformal conditions because in this way the chirality of the full

Duality Tree is a consequence. Since in the 4-block case we will follow the same procedure,

also in that case it will be ensured that the full Duality Trees of the models we will find

are chiral.

It is however possible to understand directly the chirality of the full Duality Tree.

The reason is that the magnetic mesons are represented by arrows in the opposite di-

rection with respect to the original bifundamental fields (the ones in the edge opposite

to the dualized block). Since we imposed the presence of the cubic superpotential, the

r-charge of the mesons is exactly 2 minus the r-charge of the oppositely directed field,

so all of these last fields can be integrated out using the quadratic term in the superpo-

tential that couples the magnetic mesons to these last fields. In other words all double

arrows formed in a Seiberg Duality of a block are marginal, in the sense that they have

total r-charge 2, so they can be integrated out with a marginal quadratic term in the

superpotential.
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We have been able to classify all possible triples (α, β, γ) leading to an integer solution

for (3.9). The detailed analysis is reported in appendix A. The result is that there are

only 16 such triples and that the total number of gauge groups α + β + γ is at most 11.

Before giving the list of these models, we would like to discuss some general properties

of three block quivers that can be easily obtained from equation (3.9). We will pause on

some details because these properties also hold for the four-block chiral quivers, under

certain assumptions on the superpotential. We think that these are general features of

every physical superconformal quiver.

3.2 R-charges and unitarity

Keeping track of the Diophantine equation (3.9), the solution of the system of the beta

function equations (3.5) is:






ra =
2a

αbc

rb =
2b

βac

rc =
2c

γab
.

(3.11)

A first non trivial result is that all the r-charges, even if they change under Seiberg Du-

ality, are always positive. The consequence is that all gauge invariant chiral operators

satisfy the unitarity bound R ≥ 2
3 . In the case of three block this is always true, but

with four blocks it is possible to construct candidate superconformal quivers such that

some r-charges are negative [35, 29]. With the fields of negative r-charge it possible to

construct scalar gauge invariant baryonic operators of negative dimension, and unitarity of

the gauge theory is violated. Such operators correspond holographically to states violating

the Breitenloner-Friedmann bound, i.e. tachyons on the Anti-de-Sitter space. We will see

that these models, that can be called “tachyonic quivers”, do not satisfy the corresponding

four-block Diophantine equation. It is possible to construct examples of tachyonic quivers

applying “Partial Seiberg Dualities” [29] to physical quivers. In [44] it has been argued that

these models “decay” in a new different quiver, with a larger number of nodes and a higher

rank for the quiver matrix. In this paper, imposing the full superconformal constraints, we

rule out all possible tachionic quivers.

Another check of the unitarity of the three-block gauge theory is the positivity of the

gravitational central charge9 c. Since trR = 0, equations (2.2) imply that the central

charges are proportional to trR3. Apart from a factor of N2 from (2.3) we have:

trR3 = αx2 + βy2 + γz2 + αβxyc(rc − 1)3 + αγxzb(rb − 1)3 + βγyza(ra − 1)3 . (3.12)

At this point it is necessary to specify the constant of proportionality (3.3) between the

9Since c is related to the two point function of the energy-momentum tensor unitarity implies c > 0.

One of the statements of the conjectured a-theorem is that also a is positive for unitary theories. However

in this paper all the models satisfy c = a, so positivity of a follows from positivity of c.
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ranks (x, y, z) and (a/α, b/β, c/γ). We choose this constant to be
√

(αβγ)/K2, leading to:







K2x2 = a2 βγ

α

K2y2 = b2 αγ

β

K2z2 = c2 αβ

γ
.

(3.13)

K2 is a priori a rational number defined by the property that the numbers (x, y, z) are

integer and have no common factors.

The reason for this apparently complicated choice is that it turns out that K2 is always

an integer satisfying a simple relation with the total number of nodes of the quiver. The

name K2 (it is not a perfect square in general) has been chosen in order to make contact

with literature on del Pezzo quivers, where K2 is the square of the canonical class of the

del Pezzo surface.

Inserting (3.11) and (3.13) in the formula (3.12) gives an expression for trR3 in terms

of a, b, c, α, β, γ and K2. Keeping carefully track of the Diophantine equation (3.9) it is

possible to show that this expression simplifies to:

trR3 =
24N2

K2
(3.14)

c = a =
9

32
trR3 =

27N2

4K2
. (3.15)

Among other things this result shows that K2 is invariant under Seiberg Duality, since

the ’t Hooft anomalies are invariant as well [30]. The fact that the central charges depend

only on K2 also holds for all the four-block quivers, to be discussed in section 5. We expect

this to be valid for every physical superconformal quiver.

If the quiver comes from D3 branes probing del Pezzo singularities this result is well-

known; K2 is proportional to the volume of the del Pezzo surface. AdS/CFT correspon-

dence thus tells us that it has to be inversely proportional to the central charges. We see

here that this result is general. The difference between del Pezzo and “new” quivers is the

relation between K2 and the total number of nodes:
{

K2 = 12 − (α + β + γ) for del Pezzo quivers

K2 = 9 − (α + β + γ) for the “new” quivers
(3.16)

We will give an explanation of this result in the next section, while discussing the procedure

of “shrinking”. We remark that this relation is a consequence of our classification, and we

arrived at it looking at all the 16 possible cases. In particular it cannot be used to prove

a priori that for any 3-block chiral quiver the number of nodes is at most 11.

3.3 Asymptotic freedom for quivers

Another general fact we would like to discuss is the following “asymptotic freedom” prop-

erty:
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it is always possible to flow to the superconformal interacting fixed points start-

ing from the free ultraviolet fixed point.

This property is true also for the four-block models we will find in section 5. It is interesting

to note that the “tachyonic quivers” usually do not satisfy this requirement (and they also

do not satisfy the four-block Diophantine equation).

In a supersymmetric theory, a SU(Nc) gauge group is asymptotically free if the total

amount of matter Nf satisfies Nf ≤ 3Nc. We define a quiver to be asymptotically free

if at least one of the nodes has number of flavors n
F ≤ 3 (nF has been defined in section

2.3.3). In this case near the free points there are directions with negative beta function for

at least one coupling, so it is possible to flow away from the trivial fixed point and arrive

at the interacting conformal theory, which is thus an IR fixed point. We remark that the

existence of an RG flow arriving at the completely interacting IR fixed depends on the

precise form of the superpotential.

If all the gauge groups have n
F = 3, each gauge coupling is marginally irrelevant, so

one would suspect that it is impossible to flow away from the free fixed point. However in

this case there are always exactly marginal directions: a manifold of fixed points passing

through the free theory. The reason is that it is possible to find a combination of the gauge

and superpotential couplings such that the corresponding beta function is exactly zero.

This can be shown using Leigh-Strassler type arguments [39]. We remark that the free

ultraviolet theory, if not lying on the fixed point manifold, does not satisfy c = a.

It is easy to show that for all three-block chiral quivers it is possible to flow away from

the free theory. From the quiver diagram, using (3.13), it is possible to find the relative

number of flavors n
F of the three different types of nodes:







n
F

x = c
y

x
= α

bc

a

n
F

y = β
ac

b

n
F

z = γ
ab

c
.

(3.17)

Comparing with (3.11) we see that the number of flavors of a node is proportional to the

inverse of the r-charge of the bifundamental “opposite” to the node:







n
F

x =
2

ra

n
F

y =
2

rb

n
F

z =
2

rc
.

(3.18)

So (3.7) can be rewritten as:
1

n
F

x

+
1

n
F

y

+
1

n
F

z

= 1 . (3.19)

From this equation it is clear that at least one of the n
F has to be less than 3. If the

smallest n
F is exactly 3 than all three n

F are equal to 3 and the free theory lies on the
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superconformal manifold. This concludes our simple proof of the asymptotic freedom for

quivers possessing an interacting superconformal point in the space of the couplings.

We would like to remark that this result is not obvious a priori. There is a logical

possibility of a situation like the following: a superconformal interacting fixed points in

the ultraviolet and a free theory in the infrared. We didn’t find any compelling evidence

against this situation, we can just note that it would contrast with the expectation of the

irreversibility of the renormalization group flow: starting from the IR theory it should

be impossible to reconstruct backward the strongly coupled UV theory, since the reverse

process (flow to the IR) kills degrees of freedom and information.

In the simple case of three-block quivers we have thus shown the connections between

the following expected physical properties of superconformal quivers:

• tachyonic operators are absent (all the r-charges of the bifundamental fields are

strictly positive) and the trace anomalies satisfy the required positivity property.

• Asymptotic Freedom: it is always possible to flow to the superconformal manifold

starting from the free theory.

We will see that these facts are true and strictly related also in the four-block case. This

suggests that they are general physical requirement any superconformal quiver satisfies.

A crucial ingredient needed to arrive to the previous properties is the fact that all the

bifundamental fields enter in the superpotential: this gives the Diophantine equation con-

straint, which in turn implies the three listed properties. In the four block case the fact

that each bifundamental (or each oriented loop) enters in the superpotential will also rule

out “tachionic” quivers.

The results of the appendix A show that there are just 16 classes of solutions to the

Diophantine equations, leading to a total of 16 duality trees. These represent all the chiral

quivers that can be Seiberg Dualised to a three-block model. In fact not all these theories

are different. For instance the gauge theories corresponding to the surface del Pezzo 6

admits two different minimal three-block structures: one with (α, β, γ) = (3, 3, 3) and one

with (α, β, γ) = (1, 2, 6). One class can be obtained from the other by successive Seiberg

dualities, breaking the three-block structure in the intermediate steps. For del Pezzo 7

there are 3 different 3-block minimal models and for del Pezzo 8 there are 4.

In total thus there are 10 different classes of quivers which admit a three-block struc-

ture. 8 of them are the well known del Pezzo quivers. Surprisingly enough there are just

two “new” quivers. The 10 different classes are summarized in a table below (we also

include, without figure, the other 6 3-block models). In the next section we will find a way

to construct other rank 2 chiral quivers starting from the del Pezzo quivers.

4. From one quiver to another: “shrinking” and “orbifolding”

In this section we discuss two general procedures that lead from a superconformal quiver to

another superconformal quiver. First we describe a well known procedure, orbifold, which

has a very well known geometric meaning. Then we discuss another procedure, which we
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Quiver α β γ a b c x y z K2 surface

1 1 1 3 3 3 1 1 1 9 dP0

1 1 2 2 2 4 1 1 1 8 F0

dP3 1 2 3 1 2 3 1 1 1 6 dP3

1 1 5 1 2 5 1 2 1 5 dP4

dP5 2 2 4 1 1 2 1 1 1 4 dP5

dP6 3 3 3 1 1 1 1 1 1 3 dP6 I

2 1 6 1 1 3 1 2 1 3 dP6 II

dP7 4 4 2 1 1 1 1 1 2 2 dP7 I

1 1 8 1 1 4 2 2 1 2 dP7 II

3 1 6 1 1 2 1 3 1 2 dP7 III

dP8
1 1 9 1 1 3 3 3 1 1 dP8 I

8 2 1 2 1 1 1 2 4 1 dP8 II

2 3 6 1 1 1 3 2 1 1 dP8 III

5 5 1 1 2 1 1 2 5 1 dP8 IV

2 2 1 2 2 2 1 1 2 4 sh dP5

2 1 4 2 1 2 2 2 1 2 sh dP7

Table 1: The complete list of the minimal models for 3-block chiral quivers.

call “shrinking”. The discussions in the two cases are quite similar; this is the reason why

we consider also orbifolds and their effect on quivers.
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4.1 Orbifolds

Looking at the quiver diagrams of F0 and dP5 (Table 1), it is evident that the dP5 quiver is

the F0 quiver with the order of the blocks (α, β, γ) multiplied by 2 and the quiver numbers

(a, b, c) divided by 2. This is a consequence of the fact that complex cone over dP5 is a Z2

orbifold of the cone over F0:

F0
orbifold Z2−−−−−−−→ dP5 (4.1)

More precisely there is a point in the complex structure moduli space of dP5 with this

property [21], but the quiver diagram and the r-charges are not sensitive to a modifica-

tion of the complex structure of the surface. What is sensitive is the precise form of the

superpotential [21].

Another example of orbifolds inside the set of del Pezzo quivers is dP6: a Z3 orbifold

of dP0. In this case (α, β, γ) are multiplied by 3 and (a, b, c) divided by 3.

orbifold Z3−−−−−−−→ dP6

The last possible example coming from the list of three-block quiver of Table 1 involves one

of the three minimal models for del Pezzo 7, dP7 I, and one of the “new” models, called in

the Table 1 shdP5. Also without knowing anything about the geometry dual to the shdP5

quiver, we can say that dP7 I is a Z2 orbifold of the shdP5 quiver:

orbifold Z2−−−−−−−→ dP7

The general procedure is clear: every time the elements of the quiver matrix Q have

a non trivial common divisor d, it is possible to obtain another quiver, corresponding to

a Zd orbifold for the transeverse space. This daughter quiver has quiver matrix similar to

the matrix of the parent theory, with dimension multiplied by d and elements divided by

d. Each node is “splitted” in a d-node block. The (relative) ranks of the gauge groups and

the r-charges do not change.

It is easy to verify that the daughter quiver satisfies the superconformal restrictions,

if the parent quiver does. For each node in the original model there are n
F

i incoming bi-

fundamentals and n
F

i outgoing bifundamentals. In the orbifolded model there are again

d · (nF

i/d) = n
F

i incoming bifundamentals and the same number of outgoing. The first con-

sequence is that the ABJ anomalies cancel also in the orbifolded model. Second, since the

relative numbers of flavors n
F

i do not change, the beta function equations in the orbifolded

quiver are satisfied by the same r-charges of the original quiver. The superpotential is a

projection of the superpotential for the parent theory, so, since the r-charges do not change,

the beta functions for the superpotential couplings still vanish.
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It is important to note that if there is non trivial common divisor d for an element of

the Duality Tree, there will be the same common divisor for all the Duality Tree, so it is

not important in which point of the Duality Tree the orbifold operation is performed. For

instance for the F0 and dP5 quivers in (4.1) we chose two models slightly different from the

ones shown in Table 1.

A common divisor d for the quiver matrix indicates a non Abelian global symmetry

SU(d) for the model. For instance for dP0 d = 3 and the superpotential of the dP0 quiver

can be chosen in such a way to preserve an SU(3) global symmetry; for F0 d = 2 and the

global symmetry is SU(2) × SU(2), containing SU(2). Finding a superconformal quiver

with common divisor greater than 3 would lead to difficulties for the existence of a string

description of the quiver. The reason is that the global non Abelian symmetries of the

conformal quivers correspond holographically to isometries of the transverse space X5,
10

where the holographic dual is given by Type IIB strings on AdS5 × X5. This isometry

group cannot be larger then SU(4) = SO(6), the maximal symmetry group for a compact

5-dimensional real manifold. With a common divisor 4 we would have an isometry group

containing the SU(4) factor and also the U(1) R-symmetry, which is too big.

The process just discussed does not describe the more general orbifolds, since it leaves

the conditions of superconformality and chirality untouched. More general geometric orb-

ifolds are in correspondence with discrete subgroups of the isometry group of the transverse

space. In the two del Pezzo examples given above the discrete subgroup is in the center

of the isometry group. This suggests that also for the shdP5 quiver the superpotential

preserves at least an SU(2) global symmetry. Since the superpotential for the orbifolded

theory can be easily obtained from the superpotential for the parent theory, one could

think that it is possible to reconstruct the moduli space (and thus the geometry) from the

geometry of dP7. Unfortunately the superpotential for the quiver dP7 is still not known.

4.2 Shrinking

In the last paragraph we saw that if all the numbers of the intersection matrix share a

non trivial common divisor it is possible to obtain another superconformal quiver by the

procedure of orbifolding.

In fact there is another similar procedure. Suppose we have a node (say node 1) such

that there is a non trivial common divisor d for the number of arrows connected to that

node: Q1i = d q1i.
11 Also in this case it is possible to “split” the quiver; the steps are the

following:

• split node 1 in a block of d2 nodes;

• divide by d the multiplicity of the arrows connected to node 1;

• divide by d the rank of the group U(N1) associated to node 1;

10There can be baryonic symmetries not coming from isometries of X5 [40], but these are always Abelian.

The recently discovered non Abelian extension [27] holds in the infinite coupling limit.
11We observe that this condition is invariant under Seiberg Duality, if it holds in a point of the Duality

Tree it holds in all the Duality Tree.
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• leave untouched the rest of the quiver diagram.

We call the inverse of this splitting procedure “shrinking of a block of d2 nodes”:

N

N

N

d

a

a

a

2 b

b

b

shrinking−−−−−−→

d b
d N

d a

(4.2)

As for the orbifold it is possible to give a simple proof of the fact that the shrunk model

satisfies the superconformal conditions. We discuss this issue at the end of this paragraph,

after having given some examples, taken by the 3-block list of Table 1.

Every quiver containing a block with 4 or more nodes can be shrunk, and the result is

a new different quiver. This is true also for non-chiral superconformal quivers, even if we

only discuss chiral examples.

One example is the shrinking of 9 nodes of the 3-block dP8 quiver with (α, β, γ) =

(1, 1, 9); this leads to the dP0 quiver, with (α, β, γ) = (1, 1, 1):

dP8

shrinking−−−−−−→ dP0
(4.3)

Note that this model of dP8 has zero anomalous dimensions and therefore is a candidate to

be an orbifold model. Indeed this quiver is precisely that of the orbifold C
3/∆(27) [18, 42].

It is interesting that the two non del Pezzo 3-block quivers can be obtained from del Pezzo

quivers by shrinking a block of four nodes: it is possible to shrink 4 nodes of dP5 and of

dP7.

dP5

shrinking−−−−−−→

dP7

shrinking−−−−−−→

The model shdP7 still contains a block with four nodes, so it can be shrunk again. The

result is the F0 quiver. It is thus possible to construct the following chain of shrinking and

orbifolds:

F0
orbifold−−−−−→ dP5

shrinking−−−−−−→ shdP5
orbifold−−−−−→ dP7

shrinking−−−−−−→ shdP7
shrinking−−−−−−→ F0

This succession of quivers in our opinion suggests that a string interpretation of the quivers

shdP5 and shdP7 should be possible.
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We also note that shrinking the block with 8 nodes in the dP8 quiver with (α, β, γ) =

(1, 2, 8) leads again to the shdP5 quiver:

dP8
shrinking−−−−−−→ shdP8

shrinking−−−−−−→ shdP5
(4.4)

It is possible to shrink a quiver with a block with more than 4 nodes: first one divides

the block in a block of 4 nodes and in another block with the remaining nodes, then one

shrinks the 4-node block. Applying this procedure to a 3-block quiver one obtains a 4-block

quiver. For example the intermediate quiver shdP8 in (4.4) is a 4-block quiver; we discuss

some other examples in the last paragraph of this section.

The shrunk models are conformal

Here we discuss the reason why the shrinking procedure is non trivial: if the original

quiver is superconformal also the shrunk one satisfies the superconformal constraints. We

recall that constructing supersymmetric quivers is very easy (it is enough to cancel the

gauge anomalies), while imposing that an interacting RG fixed point exists (superconformal

quiver) is much more difficult: it is necessary to exactly cancel the beta functions for all

the couplings of the theory.

The proof is easy and is very similar to the arguments given in the last subsection

for orbifolds. If we show that the relative number of flavors n
F does not change for each

node (for the new node this means that it has the same n
F of the nodes in the shrunk

block) the proof is almost finished: the ABJ anomalies cancel and the gauge couplings

beta functions vanish with the same r-charges of the original theory; with the same r-

charges also the superpotential couplings beta functions vanish, since the possible loops in

the shrunk theory are in correspondence with loops of the original theory. So we have to

study the relative number of flavors n
F.

Let’s analyze first node 1 (the shrunk one). The nodes in the old d2-nodes block have

(as in equation (2.16))

n
F

block =

∑

i>d2 |Qold
1i |Nold

i

2Nold
1

, (4.5)

where we label the nodes outside the d2-nodes block with integers starting from d2 + 1

(both in the old and in the new quiver). The new shrunk node has

n
F

shrunk =

∑

i>d2 |Qnew
1i |Nnew

i

2Nnew
1

. (4.6)

Taking into account that






Qnew
1i = dQold

1i

Nnew
1 = dNold

i if 1 ≤ i ≤ d2

Nnew
i = Nold

i if i > d2 ,

(4.7)

it is clear that (4.5) and (4.6) are equal.

Now we consider n
F for a generic node labelled by i > d2 (in the clouds of (4.2)).

n
F

old =

∑

j 6=i |Qold
ij |Nold

j

2Nold
i

=

∑d2

j=1 |Qold
ij |Nold

j

2Nold
i

+

∑

d2<j 6=i |Qold
ij |Nold

j

2Nold
i

, (4.8)
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The first addendum on the r.h.s. represents the d2 equal contributions from the d2-nodes

block and, keeping track of (4.7), can be rewritten as

∑d2

j=1 |Qold
ij |Nold

j

2Nold
i

=
d2|Qold

i1 |Nold
1

2Nold
i

=
|Qnew

i1 |Nnew
1

2Nnew
i

. (4.9)

The second addendum in (4.8) represents contributions coming from nodes inside the cloud,

it obviously satisfies
∑

j>d2 |Qold
ij |Nold

j

2Nold
i

=

∑

j>d2 |Qnew
ij |Nnew

j

2Nnew
i

. (4.10)

The relative number of flavors n
F for a generic node in the shrunk quiver is given by

n
F

old =

∑

j 6=i |Qnew
ij |Nnew

j

2Nnew
i

=
|Qnew

i1 |Nnew
1

2Nnew
i

+

∑

j>d2 |Qnew
ij |Nnew

j

2Nnew
i

. (4.11)

It is clear that (4.11) is equal to the sum of (4.9) and (4.10), so it is equal to (4.8).

In conclusion we have shown that the relative number of flavors n
F are the same in

the original and in the shrunk model, completing the proof that the shrunk quiver is a

consistent superconformal field theory. Once again we would like to remark that this fact

does not depend on the chirality of the quiver, a property that indeed wasn’t used.

4.3 Some general properties of shrunk quivers

In this subsection we would like to make some general comments on the properties of the

shrunk models. The most interesting thing to understand is if these new superconformal

field theories arise as the low energy excitations of a stack of D3 branes in Type IIB string

theory, as the original models do. As discussed in Section 2.3.1 if one finds a superpotential

leading to a 3-complex dimensional cone the answer should be positive. This is however

not necessary, it could happen that the string dual has non trivial R-R fluxes, leading to

a potential for the D3 branes and effectively decreasing the dimension of the moduli space

of the gauge theory. It is also possible that the string dual has non trivial NS-NS fluxes.

In the case of orbifolds this is called Discrete Torsion. NS-NS fluxes in the cases analyzed

in the literature always lead to a decrease in the number of nodes in the quiver: this is

similar to our shrinking procedure and suggests that shrinking generically involves (on the

geometric side) turning on NS-NS forms. It is possible that discrete R-R fluxes, which can

have the generic name discrete torsion as well, will have a similar effect.

Studying all the possible moduli spaces as a function of the superpotential is not an easy

task, however this search can be simplified by restricting to superpotentials that preserve

a global symmetry SU(d). This symmetry for the shrunk models arise in a way similar

to the orbifold: the multiple legs connected to the shrunk node can be charged under a

non Abelian symmetry SU(d), since there is precisely a common divisor d. For instance in

(4.3) 3 incoming and 3 outgoing legs are connected to the shrunk node and in the shrunk

quiver, which is del Pezzo 0, there exists a (unique) superpotential preserving an SU(3)

global symmetry. This symmetry, together with the U(1) R-symmetry, corresponds to the

isometries of the transverse space, which, in this case, is simply the orbifold C
3/Z

3.

– 27 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
2

Also for the shrinking we note that finding a non-Abelian global symmetry bigger than

SU(3) would prevent the existence of a holographic dual; interestingly in our classifications

we never find a superconformal quiver with a (local) common divisor greater than 3, or,

equivalently, a superconformal quiver with a block with 16 = 42 or more nodes.
Now we would like to discuss some aspects anticipated in Section 3.2. First of all we

note the rank of the quiver matrix does not change;12 the reason is quite simple. Consider
the upper triangular part of the antisymmetric quiver matrix. The procedure inverse to
shrinking substitutes a column (say the last) with d2 identical columns:












0 ∗ . . . ∗ dQ1

0
...

...
. . . ∗

...

0 dQn

0












shrinking←−−−−−−



















0 ∗ . . . ∗
d2

︷ ︸︸ ︷

Q1 . . .Q1

0
...

...
...

. . . ∗
...

...

0 Qn . . .Qn

0 . . . 0
. . .

...

0







d2



















. (4.12)

It follows that, considering the full antisymmetric matrix, the rank does not change. In

our cases thus, both the del Pezzo quivers and the shrunk del Pezzo quivers have rank 2.

Another important feature of the superconformal field theory is the invariance under

shrinking of the two gravitational central charges c = a. Recalling formulae (2.2) and the

fact the for superconformal quivers tr(R) = 0 we have to show that tr(R3) is invariant.

We can recognize in formula (2.3)

trR3 =
∑

G∈gauge groups

dim[G] +
∑

B∈bifundamentals

dim[RB ](rM − 1)3 (4.13)

4 different contributions: the gauge groups inside the clouds of (4.2), the bifundamental

fields inside the clouds, the gauge groups forming the d2-node block (becoming the shrunk

node) and the contribution coming from the bifundamental connecting the d2-node block

to the rest of the quiver. Each of these 4 contributions is invariant.

For the first two summands this is clear, since the quiver does not change inside the clouds

and all the r-charges are the same.

The third summand is the initial block with d2 nodes of rank N . Its contribution to tr(R3)

is d2 N2. The contribution coming from the shrunk node of rank dN is (dN)2 too, so also

this part is invariant.

The fourth summand before shrinking contributes as

d2 N
∑

j>d2

|Qold
1j |Nold

j (r1j − 1)3 ; (4.14)

12In the case of a non-chiral quiver this statement is still meaningful, if we define the rank of the quiver

matrix to be the rank of the antisymmetric part of the matrix describing the number of arrows in the quiver.

With this definition the rank of the conifold and the generalized conifolds vanishes, since these model are

completely non-chiral, and the antisymmetric part is a zero matrix.
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after shrinking it becomes

(dN)
∑

j>d2

|Qnew
1j |Nnew

j (r1j − 1)3 . (4.15)

These two expressions are easily seen to be equal recalling that, (4.7), Qnew
1i = dQold

1i and

Nnew
i = Nold

i if i > d2.

In conclusion all of the 4 contributions are the same in the original and in the shrunk

models. We conclude that the value of the central charge is invariant under the shrinking

procedure.

One could object that the central charges of del Pezzo 8 and del Pezzo 0 quivers are

different (the first is 9 times bigger than the latter), and this is in contrast with the fact

that shrinking 9 nodes of del Pezzo 8 leads to del Pezzo 0, as in (4.3). The explanation

is that the ranks of the gauge groups in del Pezzo 8 are (3N, 3N,N, . . . ,N), as shown in

Table 1, so shrunk del Pezzo 8 has ranks (3N, 3N, 3N). Formula (3.15) thus explains the

factor of 9. (The same observation applies to the “equality” between F0 and del Pezzo 7

shrunk two times.)

We are now able, as anticipated, to explain the relations (3.16), relating K2 and the

number of nodes. The starting point is (3.15):

c = a =
27N2

4K2
. (4.16)

Since the gravitational central charges do not change under shrinking, also K2 is invariant.

The shrunk model have 3 nodes less with respect to the original ones (a block of 4 nodes

becomes just 1 node), so from the relation

K2 = 12 − (α + β + γ) for del Pezzo quivers (4.17)

it follows that

K2 = 9 − (α + β + γ) for del Pezzo quivers with 4 nodes shrunk. (4.18)

4.4 New superconformal chiral quivers

A procedure very similar to shrinking can be applied to more than one quivers at once.

Take for instance three disconnected (3, 3, 3) models for del Pezzo 6 with gauge groups

U(N): one can replace three blocks (taken from the three different quivers) with a single

node U(3N) (without changing the multiplicities of the arrows). In general one can “fuse”

d different d-node blocks (coming from d different quivers) in just one node. In such a

way it is possible to construct an infinite class of new quivers satisfying the superconformal

conditions. However, the rank of the quiver matrix during this process increases.

Since we are interested in quivers whose quiver matrix has rank 2, we concentrate

on the shrinking procedure described in the last subsection, which leaves the rank of the

quiver matrix untouched.
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In order to construct new rank-2 superconformal quivers, we have to look for blocks

with 4 or more nodes. The smallest (in the sense of the total number of nodes) quiver

could be a three-block quiver with 6 nodes, (α, β, γ) = (1, 1, 4), but such a quiver does not

exist, as follows from the classification of 3-block quivers given in the appendix.

With 7 nodes it is possible to shrink dP4 quiver, which has (α, β, γ) = (1, 1, 5). In

order to do this it is necessary to “open” the block with 5 nodes in a block of 4 nodes and

a block with 1 node, then shrink the block with 4 nodes. The result is a 4-block chiral

superconformal quiver:

dP4
∼ shrinking−−−−−−→

With 8 nodes there is just the dP5 quiver to shrink, leading to the already discussed

three-block 5-node quiver shdP5.

With 9 nodes we can shrink dP6, model II, with (α, β, γ) = (2, 1, 6). In order to do this

it necessary to open the block with 6 nodes then shrink the resulting block with 4 nodes:

dP6

shrinking−−−−−−→

This procedure can be applied also to the quivers dP7 and dP8. In these two cases

there are however some differences.

First, it is possible to obtain inequivalent quivers from equivalent original quivers (equiva-

lent means related by successive Seiberg Dualities). The reason is that after the shrinking

there are less nodes, so there is less freedom for the Seiberg Dualities, and the result is

that it is impossible to Seiberg Dualize the shrunk models between each other.

Second, it is possible to shrink the dP7 and dP8 quivers two times. In the case of dP7 this

leads to a quiver identical to the F0 quiver. In the case of dP8 the double shrinking leads

to shrunk-del Pezzo 5 or to new 5-nodes quivers.

We will not describe in detail all the possible “shrunk” chiral superconformal quivers,

since the procedure for constructing them is by now clear. In the next section we will

analyze the case of 4-block chiral quivers. The superconformal restrictions lead also in this

case to a set of Diophantine equations that classify all the possible models. A computer-

based search of solutions to these Diophantine equations leads to the result that all non

del Pezzo models can be obtained applying the shrinking procedure to a del Pezzo quiver.

5. Four-block chiral quivers

In this section we analyze in detail the supersymmetric chiral quivers that can be organized

in a 4-block structure. We study the constraints on the matter content of the quiver arising

by anomaly cancellation and by conformal invariance, obtaining (like in the 3-block models)

a Diophantine equation which classifies all possible models.
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In this class of superconformal quivers there are of course models that can be Seiberg

Dualised to 3 blocks, which have been analyzed in Section 3. In the previous section we

saw that it is possible to construct, beyond the quivers that admit a 3-block structure,

4-block models arising from the operation of shrinking 4 nodes of the del Pezzo n quivers,

with 4 ≤ n ≤ 8. Again we notice that it is not possible to construct the quivers of del

Pezzo 1 and del Pezzo 2, having respectively 4 and 5 nodes.

The main result of this section gives strong support to the conjecture that all the chiral

4-block quivers are of this type: there are only the del Pezzo and the shrunk-del Pezzo

quivers. This result is obtained studying the possible solutions of the 4-block Diophantine

equation. In this case, however, we have not been able to give an analytic proof of this fact.

Our assertion is based on a search of solutions done on the computer. Looking for “roots”

of Duality Trees one finds (similarly to the 3-block case) solutions given by quiver matrices

formed by “small” integers, then, increasing the size of these integers, one does not find

solutions anymore. In the 3-block case we were able to give a detailed analytic proof of the

absence of other solutions (beyond del Pezzo and shrunk-del Pezzo). In the 4-block case

we have to rely on computer simulations, but we think that this number theoretic result is

quite solid.

This result implies that all the physical properties discussed in Section 3 for 3-block

quivers (unitarity and asymptotic freedom) hold also for all the 4-block models. The

reason is that they are valid for del Pezzo quivers and the procedure of shrinking leave

these properties untouched.

Recalling that the quiver matrix of all the 3- and 4-block models has rank 2, our

classification results lead naturally to the conjecture that all the rank-2 chiral quivers are

del Pezzo quivers or can be obtained by shrinking one or two blocks in a del Pezzo quiver.

This conjecture implies in particular that rank-2 chiral quivers have at most 11 nodes, since

the del Pezzo quiver with the higher number of nodes, del Pezzo 8, has precisely 11 nodes.

5.1 Structure of the quiver diagram

First of all we have to understand the topological structure of the quiver diagram, i.e. the

possible direction of the arrows. We will see that for the case of four blocks there is just

one possibility.

For each node in the quiver diagram cancellation of the gauge anomalies tells that it

is forbidden to have all the 3 arrows incoming or all the 3 arrows outgoing. There are thus

two possible types of nodes:

• first kind: 2 incoming arrows and 1 outgoing arrow,

• second kind: 1 incoming arrow and 2 outgoing arrows.

Since each arrows is outgoing from a block and ingoing into another there has to be exactly

2 blocks of the first kind and 2 blocks of the second kind.

Now, if the two outgoing arrows of the two blocks of the first kind go into blocks of the

second kind, there is one arrow of one of the two blocks of the second kind that has no

place to go. So there has to be one arrow (and just one, in order not to have bidirectional
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β γ

δ

fa

c

d

e
b

α

Figure 3: 4-block chiral quiver diagram.

arrows and spoil chirality) from a block of the first kind (we call it the first block) to the

other block of the first kind (we call it the second block). From the second block will start

exactly one arrow (since it is of the first kind), and this arrow will arrive in a block of the

second kind; we call this block the third block. The remaining block will be the fourth one.

Up to now we have ordered the blocks and we have assigned the direction of three arrows:

α

β γ

δ

The missing outgoing arrow from block-3 can go only in block-1, and the two arrows, of

block-4 must finally go in block-1 and block-2, completing the diagram as in figure 3.

In figure 3 there are also the number of bifundamentals between nodes in different

blocks (intersection numbers): a, b, . . . , f . These are non-negative integer numbers.

We conclude that there is just one type of quiver diagram also in the case of four

blocks. In the case of 5 blocks (or nodes) this is not true anymore [36].

The quiver matrix Qij is thus an antisymmetric block-matrix, with blocks of dimension

α×α, α×β etc. The first physical condition to be imposed is that for each node the ABJ

gauge anomalies vanish, as in (3.1):
∑

j

QijNj = 0 for each i, (5.1)

where Nj is the rank of the ith node. The kernel of Q has dimension at least (dim[Q] − 4),

but we have to search the kernel for vectors satisfying the 4-block condition:

( N1, . . . , N1
︸ ︷︷ ︸

α

, N2, . . . , N2
︸ ︷︷ ︸

β

, N3, . . . , N3
︸ ︷︷ ︸

γ

, N4, . . . , N4
︸ ︷︷ ︸

δ

) .
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We have thus to look at a reduced antisymmetric quiver matrix:

q =








0 a −b −c

−a 0 d −e

b −d 0 f

c e −f 0








. (5.2)

We recall that the minus signs mean that, for instance, −b arrows go from block-1 to

block-3, i.e. the arrows connecting block-1 and 3 go from 3 to 1, as in the Figure 3.

Cancelling the gauge anomalies means finding a vector in the kernel of q. In the 3-

blocks chiral quivers there is always exactly one such vector (we exclude the trivial case

q = 0), since a 3 × 3 antisymmetric matrix has always rank 2. In the 4-block case this is

not guaranteed: the vanishing of the determinant has to be imposed:

det(q) = (c d + b e − a f)2 = 0 . (5.3)

At this point we have a two-dimensional kernel, so, for any choice of α, β, γ, δ and of a

singular matrix q, there are well defined gauge theories (if the vector (αN1, βN2, γN3, δN4)

lies in the kernel of q), however it is not guaranteed that there is an interacting conformal

fixed point.

Before going on to impose these last constraints we describe when the 4-block models

reduce to 3-block ones. The vanishing of the gauge anomalies tells that, if, for instance, a

vanishes also b and c have to vanish, and the model reduces to a 3-block model. The same

happens for d and f . Thus, if we don’t want to reduce to a 3-block, we have to require also

a > 0, d > 0, f > 0. We remark that this condition is necessary in order to have a 4-block

quiver, but it is not sufficient: it is possible that a quiver satisfying the previous constraint

can be Seiberg dualised to a 3-block quiver.

5.2 The superconformal conditions

Now we arrive to the most restrictive constraints. We have to impose that the beta functions

of the gauge couplings and of the superpotential couplings vanish. We call the r-charges of

the chiral superfields in the bifundamentals ra, rb, ..., rf . The numerators of the exact beta

functions for the 4 gauge couplings are (as in (3.4)):







N1 +
1

2
βN2 a(ra − 1) +

1

2
γN3 b(rb − 1) +

1

2
δN4 c(rc − 1) = 0

N2 +
1

2
αN1 a(ra − 1) +

1

2
γN3 d(rd − 1) +

1

2
δN4 e(re − 1) = 0

N3 +
1

2
αN1 b(rb − 1) +

1

2
βN2 d(rd − 1) +

1

2
δN4 f(rf − 1) = 0

N4 +
1

2
αN1 c(rc − 1) +

1

2
βN2 e(re − 1) +

1

2
γN3 f(rf − 1) = 0 .

(5.4)

There are also relations coming from the vanishing of the beta functions of the super-

potential couplings. From the quiver diagram we see that there are three classes of gauge

invariant operators candidate to appear in the superpotential:
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• a cubic term XαβXβγXγα;

• a cubic term XβγXγδXδβ ;

• a quartic term XαβXβγXγδXδα.

In order that each field enters in at least one term in the superpotential it is necessary

that all of these three terms appear.13 A chiral operator is marginal at the interacting

fixed point if its total r-charge is 2. So the r-charges have to satisfy the following 3 linear

relations, analogous of (3.7):






ra + rd + rb = 2

re + rd + rf = 2

ra + rd + rf + rc = 2 .

(5.5)

In total there are seven linear equations and six variables. In order that a solution exists

the integers (a, b, c, ..., f) have to satisfy a constraint. It turns out that this constraint is

a Diophantine equation, a higher order generalization of the Markov Equation. Once this

equation is satisfied, we can reconstruct uniquely the 4-vector of the ranks in terms of the

quiver matrix, and we can also find the 6 r-charges. We note that of the 2-dimensional

kernel only one vector (N1, N2, N3, N4) gives rise to a superconformal theory. The other

vector takes the theory away from the conformal point and can be used to study duality

cascades of the Klebanov-Strassler type [11, 28, 26].

Instead of describing in detail the quite involved simultaneous solution of the equations

(3.1), (5.3), (5.4), (5.5) we just give the results in the next paragraph.

5.3 Results for the four blocks case

The Diophantine equation, written in term of only (α, β, γ, δ) and the quiver matrix, is a

generalization of the 3-block one (3.9):

a2

γδ
+

b2

βδ
+

d2

βδ
+

d2

αδ
+

e2

αγ
+

f2

αβ
+

ace

γ
+

bcf

β
=

abd

δ
+

def

α
+ acdf , (5.6)

which has to be supplemented by the rank-2 constraint (5.3):

cd + be = af . (5.7)

Equation (5.6) is the generalization of the equation for 4 nodes: α = β = γ = δ = 1

which was derived in [35]. We note that the r.h.s. of (5.6) is the sum of the monomials

corresponding to the loops appearing in the superpotential, similarly to the 3-block case.

The ranks of the gauge groups are given by the following formulae (Ni = N xi):






αK2x2
1 = βγ d2 + βδ e2 + γδ f2 − βγδ def

βK2x2
2 = αγ b2 + αδ c2 + γδ f2 + αγδ bcf

γK2x2
3 = αβ a2 + αδ c2 + βδ e2 + αβδ ace

δK2x2
4 = αβ a2 + αγ b2 + βγ d2 − αβγ abd .

(5.8)

13This is precisely the requirement that will prevent us from finding quivers with negative r-charges, of

the type discussed in [29, 35].
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K2 is a priori a rational number such that the four ranks xi have no common factors. Also

in this case it turns out that it is always an integer depending only on the number of nodes.

This fact can be seen as a consequence of algebro-geometric results for del Pezzo quivers

and of the fact that all the new quivers are obtained by del Pezzo quivers shrinking one or

two blocks of 4 nodes. The relation is as in (3.16): K2 is given by 12 minus the number

of nodes for a del Pezzo quiver and by 9 minus the number of nodes for a del Pezzo quiver

where 4 nodes have been shrunk.

It is also possible to find a general formula for the r-charges:






K2ra =
2a

x1x2

K2rd =
2d

x2x3

K2rf =
2f

x3x4
.

(5.9)

rb, rc, re can be obtained combining this relations with the superpotential constraints (5.5).

We note that the results (5.6), (5.8) and (5.9) are in agreement with general formulae

derived in [35] studying properties of exceptional collections of sheaves over del Pezzo

surfaces. The implication is that the properties of del Pezzo quivers are expected to be

valid for any chiral quiver.

A check: reduction to three blocks

The formulae of the last subsection can be specified to the case of three blocks. In order to

do this, it is enough to put x4 = 0 or x1 = 0. It is not possible to ask for the vanishing of

x2 or x3, since in these cases equations (5.8) and (5.6) would force the entire quiver matrix

to vanish. This is consistent with the fact that if the block β or γ disappears the quiver

diagram reduces to a non-oriented triangle.

For definiteness we take x4 = 0 and c = e = f = 0. The equations for the ranks

become: 





αK2x2
1 = βγ d2

βK2x2
2 = αγ b2

γK2x2
3 = αβ a2

0 = αβ a2 + αγ b2 + βγ d2 − αβγ abd .

(5.10)

The rank-2 constraint (5.3) is identically satisfied (a non vanishing antisymmetric 3x 3

matrix has always a one dimensional kernel) and the Diophantine equation coincides with

the fourth equation of (5.10). In summary (5.10) coincides exactly with the results obtained

in the 3-block case and we have a check of the validity of the formulae given in the previous

subsection.

6. Conclusions

In this paper general results concerning superconformal quivers are found.

The fact that for all these theories the relation c = a is satisfied suggests that every

superconformal quiver can be geometrically engineered as the low energy theory arising on

D3 branes probing a singular Calabi-Yau threefold.
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Studying the problem of the classification of the superconformal quivers, we defined an

operation on superconformal quivers that changes the quiver but leaves the superconformal

constraints satisfied. This “shrinking” procedure decreases the number of nodes, and can

be applied any time the original quiver has a block of, at least, four nodes.

Restricting the attention to the case of completely chiral quivers, we showed that all

models that admit a 3 block structure are the well known del Pezzo quivers or arise from

shrinking one or two times a del Pezzo quiver, strengthening thus the idea of a one-to-one

correspondence between 4D conformal quivers and Type IIB AdS5 × X5 compactifications

(possibly with fluxes turned on). For the case of 4 block structure we gave evidence that

the same result holds.

There are two main problems that are left open.

First it would be nice to complete the classification of rank 2 chiral quivers. Our

results for 3 and 4 blocks suggest that all these models are del Pezzo quivers or arise

from shrinking a del Pezzo quiver. This would imply that the maximum number of nodes

is precisely 11 and that the physical requirements discussed in section 3 (unitarity and

asymptotic freedom) are always satisfied. For this generalization concepts as “well split

chiral quivers”, developed in [35 – 37], should play an important role.

The second problem concerns understanding if there is a string theoretical description

of the procedure of shrinking. One possibility is that these new theories arise on D3

branes on vanishing del Pezzo surfaces as the del Pezzo quivers, but with Discrete Torsion

turned on. Such backgrounds are notoriously difficult to analyze, however it should be

possible to gain some insights on this problem directly from the gauge theory. For instance

imposing SU(2) symmetry in the shrunk models the superpotential is highly constrained:

it could be possible to understand which are the exactly marginal superpotentials and to

reconstruct the moduli space of vacua. We remark again that the precise knowledge of the

superpotential is necessary in order to “prove” that the conformal fixed point exists and

that the r-charges are the ones used in the text.

Independently from the knowledge of the precise superpotential, some information

could be gained from the study of baryons and baryonic symmetries, along the lines of [40,

25, 41, 34]. It would also be nice to understand if there are hidden global symmetries as

the ones found for del Pezzo quivers in [27].
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A. Classification of three-block Diophantine equations

In section 3 it has been shown that the three-block models are classified by the following

equation:
a2

α
+

b2

β
+

c2

γ
= abc (A.1)

We want to find all the solutions to this equations, modulo Seiberg Dualities. Given

a particular solution we can Seiberg dualize it and obtain another solutions in the Duality

Tree. (In the case α = β = γ = 1 this is the so called Markov Tree). As remarked in

section 2.3.3 it is convenient to restrict the search to the roots of the trees. We will see

that there are only a finite number of “root” solutions to the generalized Markov equation.

Equivalently there are only a finite number of triples (α, β, γ) that admit a solution for

(A.1).

In order to simplify the search, it is convenient to decrease the number of the variables

(now we have the six integer variables a, b, c, α, β, γ, from which we can easily obtain also

the other three integer x, y, z and the rational number K2) and work with just three new

integer variables: 





X := a2βγ

Y := b2αγ

Z := c2αβ

(A.2)

In term of this variables (A.1) becomes

X + Y + Z =
√

XY Z . (A.3)

By construction each solution of (A.1) gives rise to a solution of (A.3); thus, once we

find all the integer solution of (A.3) we can find all the solutions of (A.1), and this last step

is very easy, since the defining equations for X,Y,Z are simple. Equation (A.3) is satisfied

by an infinite number of triples of integer, however also these triples can be related by

“Seiberg Duality”, so they can be organized in “duality trees”: we will see that there are

just four duality trees for (A.3).

Study of the equation X +Y +Z =
√

XY Z. Also for this equation, given a particular

integer solution, one can find an infinite set of solutions “dualising” one of the integers of

the triple. The reason is that equation (A.3) is quadratic in the variable
√

Z (or
√

Y or√
X). The dual can be found directly writing (A.3) in the form

X + Y =
√

Z(
√

XY −
√

Z) :=
√

Z
√

Z̃ (A.4)

Where we have defined the dual of Z to be Z̃:

Z̃ = (
√

XY −
√

Z)2 = XY + Z − 2
√

XY Z (A.5)

Since
√

XY Z is an integer also Z̃ will be an integer.

In order to classify all duality trees it is enough to classify their minimal solutions.

Also in this case we define a solution to be minimal (the “root” of the tree) if X, Y and Z

– 37 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
2

X Y Z

5 20 25

6 12 18

8 8 16

9 9 9

Table 2: The four minimal solutions of the Diophantine equation X + Y + Z =
√

XY Z.

increase under dualization. Under the assumption X ≤ Y ≤ Z it is enough to ask that Z

increases under the duality, that is Z̃ is greater than Z.

(A.4) implies that a minimal solution (Z̃ ≥ Z) satisfies

Z̃ ≥ Z → X + Y =
√

Z
√

Z̃ ≥
√

Z
√

Z = Z . (A.6)

Modulo trivial reorderings of the triple (X,Y,Z), the problem is thus reduced to the search

of all the integer solutions of the following system:
{

X + Y + Z =
√

XY Z

X ≤ Y ≤ Z ≤ X + Y .
(A.7)

The solutions of this system are exactly the minimal solution of equation (A.3). We claim

that the only positive-integer solutions of (A.7) are the four listed in table 2.

In order to prove this fact it is possible to proceed as follow.

First of all it is easy to show that there is a lower bound for X stricter than 0. Solving

the equation (A.3) for
√

Z gives

√
Z =

1

2

(√
XY ±

√
XY − 4X − 4Y

)

(A.8)

In order to have solutions it is necessary that the expression inside the square root is

non-negative:

XY − 4X − 4Y ≥ 0 ⇒ Y (X − 4) ≥ 4X > 0 ⇒ X > 4 . (A.9)

Since we search integers the last restriction is X ≥ 5.

Second we look for a higher bound for X. In order to find it we can study the system

(A.7) for real values of X,Y,Z. In particular we fix a value of X ≥ 5 and plot in the plane

(Y,Z) the solution (A.8) and the linear constraints of (A.7).

From the graph in figure 4 it is clear that there could be solutions to the system (A.7)

only on a finite piece of the curved line representing (A.8).

Let’s consider what happens increasing the value of X: the curved line corresponding

to the solution (A.8) moves in the left-down direction, while the allowed region (delimited

by the linear constraints) move in the right-up direction (figure 5).

The conclusion is that there is a maximum value of X allowing (real) solutions of (A.7).

This maximum value is reached when the curved line meets the point of intersection of the

lines Z = X and Z = Y . In this case we have X = Y = Z and the equation (A.3) gives:

3X =
√

X3 ⇒ X = Y = Z = 9 .
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5
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y
=

x

z=x

z=
y

z=
y
−
x

Figure 4: Intersection between the solution to equation X + Y + Z =
√

XY Z and the region

X ≤ Y ≤ Z ≤ X + Y for a fixed value of X . In this figure X = 5.

5 10 15 20

6

8

10

12

14

16

Figure 5: Effect of the increase of the value of X . There is a maximum value of X over which the

solution to X + Y + Z =
√

XY Z doesn’t pass over the region containing the minimal solutions.

Thus at this extremal point there is an integer solution, corresponding to the fourth solution

of table 2.

Assuming now that X is integer, the search for duality trees is restricted to four cases:

5 ≤ X ≤ 8.

Now the classification is easy but still quite long; in order to abbreviate it we show

that, in all of the four cases, the fact that the square root
√

XY Z has to be an integer

implies that both Y and Z must be multiples of X.14

14We point out that this property does not hold in general for non minimal solution, if the restriction

X ≤ Y ≤ Z ≤ X + Y is relaxed. What is true is, for instance, that all the triples in the duality tree with

root (5, 20, 25) are made of integer multiples of 5. This can be seen easily from (A.6) using the property

just stated, that we are going to show.
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If X = 5 (A.3) becomes

5 + Y + Z =
√

5Y Z

so one of the two integers Y and Z has to be a multiple of 5, else 5Y Z contains the

factor 5 just one time, and cannot be a perfect square. Then we have

5 + 5k + h = 5
√

kh ,

so 5 has to divide h: both Y and Z have to be multiples of 5.

Exactly the same argument works for X = 7 and also if all the prime factors in X

appear just one time (X = 6).

If X = 8 (A.3) reads

8 + Y + Z = 2
√

2Y Z .

One of Y or Z has to be a multiple of 2; this implies like above that also the other one

does. We thus divide the equation by 2:

4 + Y ′ + Z ′ = 2
√

2Y ′Z ′ .

Now either Y ′ or Z ′ has to be even, then also the other does. Dividing again by 2:

2 + Y ′′ + Z ′′ = 2
√

2Y ′′Z ′′ .

The same argument again shows that both X and Y must be integer multiple of 8.

The consequence is that for 5 ≤ X ≤ 8 the system (A.7) can be written as (r = Y
X

, s = Z
X

)

{

1 + r + s =
√

Xrs

1 ≤ r ≤ s ≤ r + 1
(A.10)

with integer r and s. The case r = s is excluded because X isn’t a perfect square in the

range 5...8. So it must be s = r + 1 and

2(r + 1) =
√

Xr(r + 1) ⇒ 4(r + 1) = Xr ⇒ r =
Y

X
=

4

X − 4
. (A.11)

The last formula gives finally the first three solutions of Table 2, since Y and Z are integer

except for X = 7.

Reconstruction of the solutions of the three-block Markov equations. Now we

have to reconstruct the three block quivers, starting from the four triples of Table 2.

This is a bit long but straightforward, so we discuss just the more involved example:

(X,Y,Z) = (8, 8, 16). This is precisely the case where we find quivers not directly related

to del Pezzo surfaces. We will see that the difference can be traced to the value of K2.

From the definitions given in (A.2) we first have to find {a, b, c ; α, β, γ} such that:







8 = a2 βγ

8 = b2 αγ

16 = c2 αβ .

(A.12)

– 40 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
2

Since there is a symmetry between the first two equations, we can ask for instance α ≥ β.

The third equation says that c can be 1, 2 or 4.

c = 1 −→

8

>

<

>

:

8 = a2βγ

8 = b2αγ

16 = αβ

©
©

©
©©*

H
H

H
HHj

8

>

<

>

:

α = β = 4

2 = a2γ

2 = b2γ

−→

(

α = β = 4 γ = 2

a = b = 1

8

>

<

>

:

α = 8 β = 2

4 = a2γ

1 = b2γ

−→

(

α = 8 β = 2 γ = 1

a = 2 b = 1

c = 2 −→

8

>

<

>

:

8 = a2βγ

8 = b2αγ

4 = αβ

½
½

½
½½>

H
H

H
HHj

8

>

<

>

:

α = 4 β = 1

8 = a2γ

2 = b2γ

−→

(

α = 4 β = 1 γ = 2

a = 2 b = 1

8

>

<

>

:

α = β = 2

4 = a2γ

4 = b2γ

©
©

©
©©*

H
H

H
HHj

(

α = β = 2 γ = 1

a = b = 2

(

α = β = 2 γ = 4

a = 1 b = 1

c = 4 −→

8

>

<

>

:

8 = a2βγ

8 = b2αγ

1 = αβ

−→

8

>

<

>

:

α = β = 1

8 = a2γ

8 = b2γ

©
©

©
©©*

H
H

H
HHj

(

α = β = 1 γ = 2

a = b = 2

(

α = β = 1 γ = 8

a = b = 1

The other three cases are shorter, we just give the results in the table.

The values of K2 and of x, y, z are determined by formulae (3.13)







K2x2 = a2 βγ

α

K2y2 = b2 αγ

β

K2z2 = c2 αβ

γ

imposing that the greatest common divisor of x, y, z is 1. Formulae (3.11)







ra =
2a

αbc

rb =
2b

βac

rc =
2c

γab

give the three r-charges. We note that there is a one-to-one correspondence between the

r-charges of the minimal solution of a given duality tree and the four families of Markov

type equations. In the last column there is the del Pezzo surface related to the quiver. We

dubbed the two shrunk models “sh-del Pezzo”.
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(X, Y, Z) α β γ a b c x y z K2 ra rb rc surface

1 1 1 3 3 3 1 1 1 9 2/3 2/3 2/3 dP0

(9, 9, 9) 3 3 3 1 1 1 1 1 1 3 2/3 2/3 2/3 dP6

1 1 9 1 1 3 3 3 1 1 2/3 2/3 2/3 dP8

1 1 2 2 2 4 1 1 1 8 1/2 1/2 1 F0

2 2 4 1 1 2 1 1 1 4 1/2 1/2 1 dP5

4 4 2 1 1 1 1 1 2 2 1/2 1/2 1 dP7

(8, 8, 16) 1 1 8 1 1 4 2 2 1 2 1/2 1/2 1 dP7

8 2 1 2 1 1 1 2 4 1 1/2 1/2 1 dP8

2 2 1 2 2 2 1 1 2 4 1/2 1/2 1 sh dP5

2 1 4 2 1 2 2 2 1 2 1/2 1/2 1 sh dP7

1 2 3 1 2 3 1 1 1 6 1/3 2/3 1 dP3

(6, 12, 18) 2 1 6 1 1 3 1 2 1 3 1/3 2/3 1 dP6

3 1 6 1 1 2 1 3 1 2 1/3 2/3 1 dP7

2 3 6 1 1 1 3 2 1 1 1/3 2/3 1 dP8

(5, 20, 25) 1 1 5 1 2 5 1 2 1 5 1/5 4/5 1 dP4

5 5 1 1 2 1 1 2 5 1 1/5 4/5 1 dP8

From this table it is possible to verify the relations (3.16)

{

K2 = 12 − (α + β + γ) for del Pezzo quivers

K2 = 9 − (α + β + γ) for the “new” quivers
(A.13)

relating K2 to the total number of nodes.
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